PHYSICAL REVIEW E, VOLUME 63, 046204
Restricted feedback control of one-dimensional maps
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Dynamical control of biological systems is often restricted by the practical constraint of unidirectional
parameter perturbations. We show that such a restriction introduces surprising complexity to the stability of
one-dimensional map systems and can actually improve controllability. We present experimental cardiac con-
trol results that support these analyses. Finally, we develop new control algorithms that exploit the structure of
the restricted-control stability zones to automatically adapt the control feedback parameter and thereby achieve
improved robustness to noise and drifting system parameters.
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[. INTRODUCTION lize the system state poidt,=[X,,X,_1] about an unstable
period-1 fixed poing* =[ X* ,X* ], whereX* = f(X* ,\), by
Recent success controlling complex dynamics of nonlinperturbing\ by an amount

ear physical and chemical systeffs-16] has opened the
door for the control of biological rhythms. Some researchers a
have speculated about the medical implications of control- 5)‘n:§(xnfl_xn)’ 2
ling heart-rate dynamics or brain rhythiiis’—22. However,
biological systems typically have characteristics that requirgyhere« is the feedback gain parameter.
special consideration. For example, biological control studies The advantage of such a control scheme is that relatively
to date[17,18,21,23-3phave required that the control inter- jittie a priori system information is required to implement
ventions be unidirectional—only allowing shortening of a control and stabiliz&* . The only requirement is knowledge
parameter. Such a restriction is somewhat analogous to tnyf the sign ofgf/a\ so that perturbations can be applied in
ing to balance a broomstick vertically on one’s palm usingihe correct direction. Knowledge of the valuef is unnec-
horizontal hand movements in only one direction. Intuitively, essary because the controlled system’s fixed point is identi-
one might expect that such a restriction would limit control-c4| to that of the uncontrolled system. Furthermore, if the
lability. However, as we will demonstrate in this paper, suchfixed point drifts during the course of the contfaks is com-
a restriction introduces some surprising complexity o thémon for biological systemsthe controlled system will track

stability properties of controlled one-dimensional map Systhe fixed point, provided that the system stays in the stable
tems. In fact, the unidirectional restriction can actually IM-range of the feedback gain parameter

prove the controllability of some systerf&l]. In this paper, The control algorithm of Eq(2) is an example of delayed

we will show how restricted control can introduce stability feedhack control, a technique that has been used in a variety
zones that do not exist in the unrestricted case. Furt_hermorgf modeling and experimental studi¢g@—4,10,24,32 In

we will show that some of these zones were present in receRfac |v, we will present an example of a biological system
cardiac control experimen&1]. Finally, we will exploitthe \yith constraints that restrict the control algorithm—only al-

structure of the stability zones in robust new control algo-jo\ing unidirectional perturbations of. The purpose of this
rithms that automatically adapt the control feedback paramsydy is to examine the implications of such a restriction.
eter.

A. Linear stability analysis of unrestricted
Il. DELAYED FEEDBACK CONTROL OF SYSTEMS delayed feedback control

DESCRIBED BY ONE-DIMENSIONAL MAPS For unrestricted control, wheré\,, can be positive or

In this study, we will consider the control of systems Negative, linearizing the controlled system about a fixed
whose dynamics can be described by one-dimensional map@int at the origin gives
Xnr1=AXp+ B(Y—Xy),
Xn+l:f(xn 1)\)1 (1) (3)
Yn+1: Xn ’
whereX, is the variable to be controlled andis an experi-

mentally accessible system parameter. The goal is to stabivhereA=f/dX|z and B=al2(3f/IN)]zx.
The eigenvalues of Eq. (3) are [A-p

+ (A= B)?+4p]/2. The fixed point is stable provided that
*Email address: hall@entelos.com both eigenvalues fall inside the unit circle. This condition is

"Email address: dchristi@med.cornell.edu met when

1063-651X/2001/6@}/0462049)/$20.00 63 046204-1 ©2001 The American Physical Society



KEVIN HALL AND DAVID J. CHRISTINI

—1<,8<%(A+1) 4

PHYSICAL REVIEW E 63 046204

iterate(3) will be uncontrolled and therefore will fall on the
solid line. Furthermore, because the first controlled iterate
(2) was less than the fixed point, the next iteré8ewill be

for A<1 [21,33. Note that the stability zone shrinks to zero above the line of identity, leading to a control intervention at
for A<—3, thereby limiting the applicability of the unre- f[he fourth iterate(4). Thus, cont-rol is applied every other
stricted control algorithm to maps with a sufficiently shallow iterate so that the sequence®f, is 0101 . .. . Inthis case,

slope(i.e., —3<A<1) at ¢*. Furthermore, forA>1 there

the fixed point is not stabilized because control fails to direct

exists no real value foB such that the eigenvalues fall the system floser to the fixed poifite., the arrows spiral
within the unit circle. Thus, unstable positively sloped fixed@way fromé&*).

points cannot be stabilized.

Ill. RESTRICTED DELAYED FEEDBACK CONTROL

Figure Ib) shows control with the same value Af but
using a slightly more negativg value, 3= —3.1. For these
parameter settings, it can be seen that control is also applied
every other iterate so that the sequence®qf is again

Restricting the above control algorithm by only allowing 0101 ... .However, in this case the fixed point is stabilized

shortening of\ gives the following controller:

a
5)\n:n5(xnfl_xn)a (5

where

1 if (Xa=Yn)>0

0=, ©®)

otherwise.
Thus, when®,=1, the control is activéi.e., a perturbation

is delivered, and when®,=0, the control is inactivdi.e.,
no perturbation is given

A. Linear stability analysis of restricted
delayed feedback control

The restricted control algorithm of E¢5) gives the fol-
lowing linearized controlled system:

Xnt1=AXn+0,8(Y,—Xp),

()
Yin+1=Xy.

Geometrically, the restriction of E¢6) means that perturba-
tions will only be applied if the state poirt, lies above the
return-map line of identity,,, ;= X,,. The dynamical effects
of this restriction depend on the sign of the slop&-at

1. Restricted control for A<—1

successfully because the control interventions direct the sys-
tem closer to the fixed poiri.e., the arrows spiral towards
£*).

Figure Xc) shows a trial in which8 was decreased to
—3.23. As in the previous example, the first controlled iter-
ate (3) is below the line of identityfdictating that the next
iterate(4) is uncontrolled. However, in this case the pertur-
bation is larger than would occur with the parameter settings
of Fig. 1(b), such that the controlled iterat8) is slightly
larger than the fixed point. This dictates that the next iterate
(4) is below the line of identity, which leads to a second
consecutive uncontrolled iteratg). Thus, control is applied
in a 0010Q ... sequence. This sequence is stable for
= —3.23 because the control perturbations direct the system
closer to the fixed point. However, i is decreased to
—3.40, it can be seen from Fig(d) that this generates a
00104 ... control sequence that is unstable because the
system is directed away from the fixed point.

The progression of unstable and stable periodic control
sequences continues indefinitely Asis decreased. In fact,
the switching paramete®,, imposes the following progres-
sion of control sequences @sis decreased from zero: un-
stable 0%, stable 031, stable 003, unstable 004, unstable
012, stable 0%, stable 00%1, unstable 00?, ..., unstable
01”, stable 0%, stable 001, unstable 001, where ¥ de-
notesk consecutive onegcontrol perturbationsbefore the
sequence repeats itself. Pané—(h) of Fig. 1 show the
cases fok=2.

Because of the progression of the control sequences im-

Typical dynamics of restricted control for negatively posed by the switching terf@,, X,.; can be expressed as

sloped unstable directionA — 1) are depicted in Fig. 1.

This figure shows eight control trials of a linear map with
A= —4 for different values of3; there are four examples of

stable control and four examples of unstable control.

Figure Xa) shows a case in which the restricted control

algorithm failed to stabilize the unstable fixed poiét

[which is located at the intersection of the uncontrolled sys-

tem map(solid line) and the line of identitydotted ling, and
is denoted by a solid trianglevith 8= —2.80. The dot-dash
lines correspond to the system maps wheis perturbed. A

series of arrows originate at the initial state point and con-

nect consecutive state poingsolid circles, numbered con-
secutively. In this case, the initial state poifit) is followed
by a control intervention, which causes the next itefajeo
fall below the line of identity. According to Ed6), the next

Xi+1=€Xo,

8
wherege, is given by the following iterative expression:

ex=(A—pB)e-1+Be2, 9

with e;=A for all sequences aneh =A%+ B(1—A) for the

01% sequences o, =A? for the 00 sequences.

The boundaries of the stability zones can be computed by
using the criterion that stable sequences move the system
closer to the fixed point after one control sequence. Because
X, 1 is the last iterate of the first §Zontrol sequence and
X, 2 is the last iterate of the first 0b%equence, the stability
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FIG. 1. Return mapéscale-independenshowing the progression of control sequencegifar— 1. Sequential state points are numbered,
the dotted diagonal line is the identity ling,, ;= X,,, the solid line is the map of the uncontrolled system with slape— 4, the fixed point
£* is denoted by the solid triangle, and the dot-dash lines show the system map when perturbed by control interf@eitiors2.8 results

in an unstable (" control sequence(b) 8= —3.1; stable 01 (c) B=—3.23; stable 001 (d) 8= —3.4; unstable 001 (¢) B=—5.5;
unstable 01 (f) B=—5.76; stable 04 (g) 8= —5.798; stable 01 (h) 8= —5.95; unstable 051

conditions ares,<1 ande,, ;<1 for the 0f and 00% se-

Fig. 2 shows that for alA<—1, stable control sequences

guences, respectively. Therefore, the boundaries are given lexist for the restricted system. This is in contrast with the

k degree polynomials 8. For example, thé&k=1 control
sequences are stable forA+1/A<pB<1+A for A<-1
[9]. Figure 2 depicts the stability zonéshaded regionsfor
k=1 andk=2. The boundaries between the stablé 8nd
001 sequences are defined by the conditis0 (dotted

unrestricted system, for which stable control sequences exist
only for A>—3, as shown by the dashed triangular region
marking its stability zon¢according to Eq(4)].

While there are an infinite number of stable zones corre-
sponding to an arbitrary numbér of consecutive control

curves in Fig. 2 These curves mark the optimal parameterperturbations, the stability zones are bounded by the curve
values for a given stability region, because the fixed point ig8=A—2—2./1—A. This boundary is computed by recog-

reached after a single control sequencé 01

nizing that ask approaches infinity, control is always active

The striking feature of this analysis is that the domain ofandX,,, ;> X, for every iterate. Thus, the algorithm behaves

control is extended by the restriction of E&) [31]. In fact,
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0

. . . — controlled point is further fromé* than the previous con-
! unrestricted .- trolled point.
: Control,,\i’ For B=3.5, control is successful; the state point ap-
: Ny proachest* in a 0 sequence as shown in Fig(cR Such
E 01’ control is successful for a noise-free model system. How-
: 0011 | ever, for a real-world system, once the state point is suffi-
; ) ciently close to&*, noise will eventually kické, to the op-
: 01 posite side of¢*. Subsequeng, will fall below the line of
i identity, causing the control to be deactivated and leading to
_3l 0 ,.:"0()12_ an exponential departure frogf .
b7 ¢ When g is increased further, the first perturbation can be
i so large that the state point will be kicked to the other side of
: &* as shown in Fig. @) for 3=4.5. Again, control is sub-
! sequently deactivated and the system diverges from the fixed
; o point.
; The boundaries between the different control sequences
: are depicted in Fig. 4. The unstable”0dequence occurs for
e—d B<A. The unstable (1sequence is bounded y<B<1
f g + A and the converging G1sequence occurs in the shaded
—6r i h 2 region 1+ A< B<A?/(A—1) [9,34]. For 3>A?(A—1), the
! A-2-2(1- A) first controlled iterate, and all subsequent iterates, lie below
E s the line of identity, thereby shutting off the control. There-
=7 ‘ . : fore, the unstable 0f0Osequence occurs f@>A?/(A—1).
-5 4 _2 2 -l Thus, forA>1, the best that the restricted control algo-
rithm can offer is a temporary reversal of divergence from
FIG. 2. Stability zones of unrestrictdéq. (3)] and restricted  the fixed point. However, in Sec. V A we will make a simple
[Eq. (8)] control for A< —1. The triangular region enclosed by the modification to the restricted control algorithm far>1 that

dashed lines in the upper right corner is the stability zone for unrewill keep the system in the vicinity of* in the presence of
stricted control. For restricted control, tke=1 (01* and 00%) and noise.

k=2 (07 and 00%) stability zones are the shaded regions enclosed

by the solid curvegwhich arek-degree polynomials i8, deter-

mined via Eq(9), as described in the te)fThe dotted curves inside IV. EXPERIMENTAL OBSERVATION OF RESTRICTED
the zones mark the transition from'0tb 00¥. The annotated open CONTROL SEQUENCES

circlesa—h correspond to the control parameters for parals(h) El . C . ) .
ectrical waves originating in the heart's upper right
of Fig. 1. The three vertically spaced solid dots indicate that there g 9 bp 9

are an infinite number of stability zones for larderThe infinite chamber propagate through cardiac muscle causing it to con-

sequence of stability zones is bounded by the cugreA—2 tract and thereby pump bIOOd'. T.he upper two chambers of
—21-A. the heart, the atria, act as a priming pump for the lower two

chambers, the ventricles. A specialized electrical conduction
structure called the atrioventricul@AV) node is solely re-
values greater than 1 —a condition met only whiis be-  sponsible for the propagation of the electrical wave from the
low the boundary. atria to the ventricles. The relatively slow AV-nodal propa-
gation time ensures optimal filling of the ventricles between
atrial and ventricular contractions.
As described in Ref.21], we studied the dynamic control
Typical dynamics of restricted control for positively of the AV-nodal conduction time using pulsatile electrical
sloped unstable directionsA{>1) are depicted in Fig. 3. stimulation of the atria irin vitro rabbit heart experiments.
This figure shows four control trials of a linear map, with Because of the nonlinear excitation properties of AV-nodal
A=2.1, for different values oB; there are three examples of tissue, the dynamics of AV-nodal conduction can bifurcate
unstable control and one example whéfeis controlled. from a period-1 regimgwhere every impulse propagates
Figure 3a) shows an unstable 0lsequence foB=1.5.  through the AV node at the same rate a period-2 regime
In this case, the perturbations are so small that all state pointsvhere propagation time alternates in a long, short, long, etc.
lie above the line of identity. The control slows the exponen-pattern during rapid atrial excitation. It has been demon-
tial growth (which would be marked by a rapid exit fro&t strated[35,36 that these dynamics can be described by a
along the solid ling but fails to force an approach & . period-doubling bifurcation of a one-dimensional map of the
If B is decreased t@@=2.5, then the perturbations are form of Eq. (1), whereX,, is the AV-nodal conduction time
large enough so that the first controll¥g is smaller than the and\,, is related to the rate of atrial excitation.
previous X,,_;. &, then falls below the line of identity, The goal in Ref.[21] was to eliminate the alternating
thereby generating the Btontrol sequence depicted in Fig. rhythm by stabilizing the underlying period-1 fixed pokit.
3(b). In this case, the sequence is unstable because a givaiis was achieved by delivering electrical stimuli to the

2. Restricted control for A1
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n+l

n+l1

FIG. 3. Return maps(scale-independent
showing the progression of control sequences for
A>1. Sequential state points are numbered, the
dotted diagonal line is the identity lin&,, 4

=X,, the solid line is the map of the uncon-
trolled system with slopé&=2.1, the fixed point

&* is denoted by the solid triangle, and the dot-
dash lines show the system map when perturbed
by control interventions(a) 8=1.5 results in an
unstable 01 control sequenceb) B=2.5; un-
stable 01 sequence(c) B=3.5; converging 04
sequence(d) B=4.5; unstable 0I0sequence.

atrial tissue in order to transiently shortep. Because there
is no practical way to lengthexy,, the timing of the electri-
cal stimuli was determined by the restricted controller of Eq.

Although thein vitro rabbit cardiac system of Ref21]
was not linear, application of the restricted control algorithm

(© (@)
1
E 4 E
= i ; =
:‘!!lj I_'l! ,’I 2
7 i{I6 ; 4 »’!i
X
n
5
(5).
4 i

FIG. 4. Stability zones of restricted contidtq. (8)] for A>1.
The zone of semistabilityshaded region, denoted 9land the
different zones of instability are separated by the cu@esA, B
=1+A, and 3=A%/(A—1). The annotated open circlesd cor-
respond to the control parameters for pana)s-(d) of Fig. 3.

A% J(A-1)!
o—C

4

resulted in several of the control sequences predicted in the
above linear system foA<—1. These control sequences
were especially clear at the initiation of control when pertur-
bations were largest.

For example, Fig. & shows the variableX, and the
control parametek,, during an unstable G1sequence for a
feedback gaina=3.3 (corresponding to a negativgé be-
causedf/ I\ <0 in the cardiac control experimentd he first
controlled beat is indicated by the arrow and corresponds to
a negative perturbation of, (all control perturbations are
negative as imposed by the switching te®y). Because the
system was nonlinear, oscillatory growth of, was
quenched and the original large-amplitude alternatioiXpf
was reduced in magnitude, but not eliminated.

When « was increased to 5.0as shown in Fig. &);
corresponding to a later segment of the same control trial
that is shown in Fig. &)], the system shifted to a stable 301
sequence that eliminated the alternationXqf. After the
fourth perturbation to, (beat 303, the system shifted to a
stable 0% sequence. This shift likely resulted from the close
proximity of the 02 and 001 stable zones$Fig. 2); noise or
drift in the system can cause such transitions.

Figure 5c) shows a stable 081control sequence that
eliminated the alternation oX, in a different rabbit heart
usinga=2.5. (Note that thex values from distinct trials are
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a 100 arrhythmia contrgl that cannot afford control failure of the
0 V\NWV\MNVNVV\N\ X (ms) type shown in the control attempt of Fig(eb.
This new technique exploits the structure of the stability
80 7\,(ms) zones to automatically adapt such thatg_* is stabilized
more robustly. Because multiple perturbations away from the
0 fixed point are not desirable, the optimal stability zone is the
60 / k=1 zone. Furthermore, because the stdbtel zone has
o’ the largest area, it will be the most robust to noise and drift-
VT e 170 180 ing system parameters. To target this zonejs adapted
b'“ according to
a1+ oa if @,_4---0,.,=0101 or 1010
%0 MAANAAT A, (ms) %= an_1— da otherwise,
70 (10
60 whereda is a small increment. Wher{/o\ )|z« is negative
5 ~V<00r' o' (as in the cardiac experiments of RE21]), o and S« are
280 290 300 310 320 positive. Otherwise they are negative.

The algorithm of Eq(10) is motivated by examining the
stability zones in Fig. 2. Fok=1, optimal control occurs

when g is at the boundary between stable'Gdnd stable
140 W’memﬁ” WA X' (ms) 001* (dotted curve of Fig. R If 3 is too large, the control
sequence will be J1(unstable if3 is so large that it is above

100 \UWWWK(IHS) thek=1 stability region or stable i3 is within the stability
4001
30 250

C 180

region but above the optimal control boundarin such a

012 001%> case, the adaptation of E(LO) will decreaseB. In contrast,
2 270 290 310 if B is too small, the control sequence will be 6air some
beat number n

sequence witlk>1 (unstable if3 is so small that it is below
FIG. 5. Control sequences observed in the rabbit heart experthe k=1 stability region or stable iB is within the stability
ments of Ref[21]. The first control perturbation in each panel is region but below the optimal control boundaryn such a
indicated by an arrow(@ An unstable 01 sequence for=3.3. (b) case, the adaptation of EGLO) will increase 8. Thus, the
The same preparation witla=5.0. In this case, the control begins adaptation will adjust the system so that it oscillates between
in a stable 001sequence and shifts to a stablé 8equence(c) A the stable 0% and stable 00" sequences, provided that the
stable 001 sequence, shifting to a stable?ddequence, and return- jncrementsa is small enough so that the step size®is
ing to a stable OC sequence in a different preparation with  syfficiently less than the height of the=1 stability zone.

=2.5. Specifically, the conditior| Sa|<|A(af/d\)| | ! ensures
that the step size is less than half the height of the zone.
independent.Similar to the sequence transitions in Figop To illustrate the adaptive algorithm, we implemented the

the system switched to its adjacent stablé @dntrol se- restricted controller of Eq(5) with the feedback gair re-

quence shortly after the control was initiated, and lateplaced bya, given by Eq.(10). ay was randomly chosen

switched back to the stable Gbtontrol sequence. between—5 and—10 andda= —0.1. We applied this con-
troller to the quadratic map,

V. MODIFICATIONS TO THE RESTRICTED Xnt1= M Xn(1=Xp) + &n, (11
CONTROL ALGORITHM
where ¢,, is a normally distributed random variable with a
mean of zero and a variance of 0.001. The goal was to sta-
Figures %a) (unsuccessfiiland §b) (successfuldemon-  bilize the fixed poinX* = (A g—1)/\o[38]. X* was success-
strate that successful control is dependent on the propdully stabilized in the period-2 Xy;=3.30), period-4 X,
choice ofa. Such dependence is a critical limitation given =3.52), and chaotic regimes = 3.65) (not shown due to
that the information required to determine the correct valuespace constrainks
of a (A, &, and df/dX|x) cannot be easily determined  To demonstrate the ability of the adaptive algorithm to
prior to control. Furthermore, the nonstationarities typical oftrack a drifting fixed point, we applied the control algorithm
biological systems imply that the appropriate valuexahay  to a quadratic map withhg=3.0 and\, increased by an
drift over time, thereby increasing the likelihood of control increment of 0.001 every iterater{,;=\,+0.001). As
failure if « is fixed. To eliminate the limitations of a fixad  seen in Fig. 6, the small incrementsXg introduced a slow
value chosen prior to control, we have developed a new tecldrift in the system dynamics and fixed point. Control was
nique that adaptively estimates [37]. This adaptive ap- initiated at iterate 250 while the system was in its period-2
proach is especially appropriate for applicatiées., cardiac  regime. Control was maintained for 500 iterates. During this

A. Automatic adaptation of the feedback gain forA<—1
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A, 35
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iteration number n 0 N C N )

0 2(I)0 400 600 800 1000
FIG. 6. Adaptive control of a drifting quadratic m@Rq. (11)].

The baseline value oky=3.00 was incremented by 0.001 each

iterate ., 1=A,+0.001), causing a slow drift in the system. Con-  FIG. 7. Adaptive control of a drifting cubic mdjq. (16)]. The

trol was activated from 258n=<750 (labeled with a ‘C” ). During baseline value ofny=2.0 was incremented by 0.001 each iterate

this period X* drifted fromX* =0.692 toX* =0.736. The adaptive (m,,;=m,+0.001), causing a slow drift in the system. Control

algorithm tracked the drifting fixed point as the system moved intowas activated from 258n<750 (labeled with a ‘C"). The fixed

the chaotic regime. point location does not change for the drifting cubic map, but the
system drifted into the chaotic regime by the end of the control

period,X* drifted fromX* =0.692 toX* =0.736. Neverthe- period.

less, the control algorithm had no trouble trackiXg. In

fact, it can be seen that when control was deactivatenl at ~ For stable control, a fixed value of the feedback gain

=750, the system had passed into the chaotic regime, aw,= o) is chosen so that £t A<B<A?/(A—1). In order

occurrence that did not disrupt control. However, if the feed-+to adaptively control fixed points with>1, the controller in

back gain was held fixed rather than adapted, then contrdfq. (12) can be used with a modified adaptive feedback gain

could not have been maintained for the entire control perioglgorithm:

(not shown.

iteration number n

an 1+ da if @, 4--0,_,=0101 or 1010
o=
A an_1— O« otherwise.
In Sec. lll A 2, we demonstrated that the restricted control (15

algorithm can induce a transient approach towaftisvhen S )

A>1. However, as mentioned, if the system is kicked to the>Uch a combination is feasible because the control-sequence
other side ofé*, control is deactivated and the system di- Poundaries foA>1 dictate that Eq(15) will direct the sys-
verges fromé* . If the algorithm could detect such an occur- [€M towards the converging 010. . sequencésee Fig. 4.

rence and reverse the sign of the perturbations, #fiecould ~ However, as in the case wheén< — 1, the increment in the

be approached from the opposite side£sf[39]. This idea feedback gain should be chosen such @aremains in the

motivates the following modification of the restricted control Stéble 01-_-1- zone.  Choosing [da|<[(A-1)
algorithm: X(9f1dN)| |+ ensures that the increment is less than half

of the height of the zone.

B. Control of fixed points for A>1

. p In order to illustrate the control of an unstable fixed point
Ohn=On 75 (Xn-17Xn), (12 with A>1, we applied the modified control algorithm to the
cubic map:
where
Xpi1=—4(m+1)X3+6(m+1)X2— (2m+3) X+ A p+ s
. [l if ®,(Xp—Y,)>0 (16)
0,= : (13
otherwise where\, is perturbed according to E¢L2) with N\o=1, m
and is the slope of the map at the fixed pokit =0.5, andZ, is

a normally distributed random variable with a mean of zero
and a variance of 0.00X* was successfully stabilized in
(14) the period-2 (h=2.2) and chaotic regimesm=2.7) (not
1 otherwise. shown due to space constraints
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Results of the adaptive feedback gain algorithm are illusensures that the drifting system is directed to, and remains
trated in Fig. 7, which shows control of a drifting cubic map within, the largest stability zone. Thus, with the dual benefits
with m,, ;=m,+0.001 andmy=2.0. Control was activated of the increased stability of unidirectional restricted control
for 250<n<750. The fixed point was controlled success-and the adaptability of on-the-fly gain estimation, such con-
fully during this period. The fixed point location does not trol techniques could be of significant value to the control of
change for the drifting cubic map, but the system drifts intobiological systems. Indeed, a recent set of clinical experi-

the chaotic regime by the end of the control period. ments[40] have shown that adaptive restricted control of this
type can successfully eliminate the same alternating AV-
VI. CONCLUSION nodal conduction rhythm that was controlled in the rabbit

o ) _ _ o . experiments of Refl21]. Furthermore, we have shown that
~ Surprisingly, the typical biological restriction of unidirec- simple modifications of the restricted control algorithm can
tional control perturbations enhances the controllability ofcontrol fixed points withA>1 — an impossible task for the
fixed points with A<—1 in systems described by one- ynrestricted feedback controller. Thus, this algorithm may

dimensional maps. Because biological systems typically drifg|so have applicability in physical systems that allow bidi-
over time, dynamic control algorithms must adapt to systemectional perturbations.

nonstationarities. Although the restricted delayed feedback
control technique allows for moderate tracking of the fixed

point as long as the system remains within a stability zone, it
is ill-suited for systems with significant drift. For such sys-  This work was supported, in part, by a grant from the
tems, automatic adaptation of the feedback gain parametéymerican Heart AssociatiofNo. 0030028N (D.J.C).
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