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Restricted feedback control of one-dimensional maps
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Dynamical control of biological systems is often restricted by the practical constraint of unidirectional
parameter perturbations. We show that such a restriction introduces surprising complexity to the stability of
one-dimensional map systems and can actually improve controllability. We present experimental cardiac con-
trol results that support these analyses. Finally, we develop new control algorithms that exploit the structure of
the restricted-control stability zones to automatically adapt the control feedback parameter and thereby achieve
improved robustness to noise and drifting system parameters.

DOI: 10.1103/PhysRevE.63.046204 PACS number~s!: 05.45.Gg, 07.05.Dz, 87.17.Nn, 87.19.Hh
lin

er
ro

ir
ie

r-
a
tr

ing
ly
ol
c
th
ys
m

ity
o

ce

o
m

s
a

ta

ely
nt
e
in

nti-
he

ble

riety

m
l-

.

ed

t
is
I. INTRODUCTION

Recent success controlling complex dynamics of non
ear physical and chemical systems@1–16# has opened the
door for the control of biological rhythms. Some research
have speculated about the medical implications of cont
ling heart-rate dynamics or brain rhythms@17–22#. However,
biological systems typically have characteristics that requ
special consideration. For example, biological control stud
to date@17,18,21,23–30# have required that the control inte
ventions be unidirectional—only allowing shortening of
parameter. Such a restriction is somewhat analogous to
ing to balance a broomstick vertically on one’s palm us
horizontal hand movements in only one direction. Intuitive
one might expect that such a restriction would limit contr
lability. However, as we will demonstrate in this paper, su
a restriction introduces some surprising complexity to
stability properties of controlled one-dimensional map s
tems. In fact, the unidirectional restriction can actually i
prove the controllability of some systems@31#. In this paper,
we will show how restricted control can introduce stabil
zones that do not exist in the unrestricted case. Furtherm
we will show that some of these zones were present in re
cardiac control experiments@21#. Finally, we will exploit the
structure of the stability zones in robust new control alg
rithms that automatically adapt the control feedback para
eter.

II. DELAYED FEEDBACK CONTROL OF SYSTEMS
DESCRIBED BY ONE-DIMENSIONAL MAPS

In this study, we will consider the control of system
whose dynamics can be described by one-dimensional m

Xn115 f ~Xn ,l!, ~1!

whereXn is the variable to be controlled andl is an experi-
mentally accessible system parameter. The goal is to s
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lize the system state pointjn5@Xn ,Xn21# about an unstable
period-1 fixed pointj* 5@X* ,X* #, whereX* 5 f (X* ,l), by
perturbingl by an amount

dln5
a

2
~Xn212Xn!, ~2!

wherea is the feedback gain parameter.
The advantage of such a control scheme is that relativ

little a priori system information is required to impleme
control and stabilizej* . The only requirement is knowledg
of the sign of] f /]l so that perturbations can be applied
the correct direction. Knowledge of the value ofj* is unnec-
essary because the controlled system’s fixed point is ide
cal to that of the uncontrolled system. Furthermore, if t
fixed point drifts during the course of the control~as is com-
mon for biological systems!, the controlled system will track
the fixed point, provided that the system stays in the sta
range of the feedback gain parametera.

The control algorithm of Eq.~2! is an example of delayed
feedback control, a technique that has been used in a va
of modeling and experimental studies@2–4,10,24,32#. In
Sec. IV, we will present an example of a biological syste
with constraints that restrict the control algorithm—only a
lowing unidirectional perturbations ofl. The purpose of this
study is to examine the implications of such a restriction

A. Linear stability analysis of unrestricted
delayed feedback control

For unrestricted control, wheredln can be positive or
negative, linearizing the controlled system about a fix
point at the origin gives

Xn115AXn1b~Yn2Xn!,
~3!

Yn115Xn ,

whereA[] f /]Xuj* andb[a/2(] f /]l)uj* .
The eigenvalues of Eq. ~3! are @A2b

6A(A2b)214b#/2. The fixed point is stable provided tha
both eigenvalues fall inside the unit circle. This condition
met when
©2001 The American Physical Society04-1
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21,b,
1

2
~A11! ~4!

for A,1 @21,33#. Note that the stability zone shrinks to ze
for A<23, thereby limiting the applicability of the unre
stricted control algorithm to maps with a sufficiently shallo
slope~i.e., 23<A,1) at j* . Furthermore, forA.1 there
exists no real value forb such that the eigenvalues fa
within the unit circle. Thus, unstable positively sloped fix
points cannot be stabilized.

III. RESTRICTED DELAYED FEEDBACK CONTROL

Restricting the above control algorithm by only allowin
shortening ofl gives the following controller:

dln5Qn

a

2
~Xn212Xn!, ~5!

where

Qn5H 1 if ~Xn2Yn!.0

0 otherwise.
~6!

Thus, whenQn51, the control is active~i.e., a perturbation
is delivered!, and whenQn50, the control is inactive~i.e.,
no perturbation is given!.

A. Linear stability analysis of restricted
delayed feedback control

The restricted control algorithm of Eq.~5! gives the fol-
lowing linearized controlled system:

Xn115AXn1Qnb~Yn2Xn!,
~7!

Yn115Xn .

Geometrically, the restriction of Eq.~6! means that perturba
tions will only be applied if the state pointjn lies above the
return-map line of identityXn115Xn . The dynamical effects
of this restriction depend on the sign of the slope atj* .

1. Restricted control for AËÀ1

Typical dynamics of restricted control for negative
sloped unstable directions (A,21) are depicted in Fig. 1
This figure shows eight control trials of a linear map w
A524 for different values ofb; there are four examples o
stable control and four examples of unstable control.

Figure 1~a! shows a case in which the restricted cont
algorithm failed to stabilize the unstable fixed pointj*
@which is located at the intersection of the uncontrolled s
tem map~solid line! and the line of identity~dotted line!, and
is denoted by a solid triangle# with b522.80. The dot-dash
lines correspond to the system maps whenl is perturbed. A
series of arrows originate at the initial state point and c
nect consecutive state points~solid circles, numbered con
secutively!. In this case, the initial state point~1! is followed
by a control intervention, which causes the next iterate~2! to
fall below the line of identity. According to Eq.~6!, the next
04620
l
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iterate~3! will be uncontrolled and therefore will fall on the
solid line. Furthermore, because the first controlled iter
~2! was less than the fixed point, the next iterate~3! will be
above the line of identity, leading to a control intervention
the fourth iterate~4!. Thus, control is applied every othe
iterate so that the sequence ofQn is 0101 . . . . Inthis case,
the fixed point is not stabilized because control fails to dir
the system closer to the fixed point~i.e., the arrows spiral
away fromj* ).

Figure 1~b! shows control with the same value ofA, but
using a slightly more negativeb value,b523.1. For these
parameter settings, it can be seen that control is also app
every other iterate so that the sequence ofQn is again
0101 . . . .However, in this case the fixed point is stabilize
successfully because the control interventions direct the
tem closer to the fixed point~i.e., the arrows spiral toward
j* ).

Figure 1~c! shows a trial in whichb was decreased to
23.23. As in the previous example, the first controlled ite
ate ~3! is below the line of identity@dictating that the next
iterate~4! is uncontrolled#. However, in this case the pertu
bation is larger than would occur with the parameter setti
of Fig. 1~b!, such that the controlled iterate~3! is slightly
larger than the fixed point. This dictates that the next iter
~4! is below the line of identity, which leads to a secon
consecutive uncontrolled iterate~5!. Thus, control is applied
in a 001001 . . . sequence. This sequence is stable forb
523.23 because the control perturbations direct the sys
closer to the fixed point. However, ifb is decreased to
23.40, it can be seen from Fig. 1~d! that this generates a
001001 . . . control sequence that is unstable because
system is directed away from the fixed point.

The progression of unstable and stable periodic con
sequences continues indefinitely asb is decreased. In fact
the switching parameterQn imposes the following progres
sion of control sequences asb is decreased from zero: un
stable 011, stable 011, stable 0011, unstable 0011, unstable
012, stable 012, stable 0012, unstable 0012, . . . , unstable
01`, stable 01`, stable 001`, unstable 001`, where 1k de-
notesk consecutive ones~control perturbations! before the
sequence repeats itself. Panels~e!–~h! of Fig. 1 show the
cases fork52.

Because of the progression of the control sequences
posed by the switching termQn , Xk11 can be expressed a

Xk115ekX0 , ~8!

whereek is given by the following iterative expression:

ek5~A2b!ek211bek22 , ~9!

with e05A for all sequences ande15A21b(12A) for the
01k sequences ore15A2 for the 001k sequences.

The boundaries of the stability zones can be computed
using the criterion that stable sequences move the sys
closer to the fixed point after one control sequence. Beca
Xk11 is the last iterate of the first 01k control sequence and
Xk12 is the last iterate of the first 001k sequence, the stability
4-2
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FIG. 1. Return maps~scale-independent! showing the progression of control sequences forA,21. Sequential state points are numbere
the dotted diagonal line is the identity lineXn115Xn , the solid line is the map of the uncontrolled system with slopeA524, the fixed point
j* is denoted by the solid triangle, and the dot-dash lines show the system map when perturbed by control interventions.~a! b522.8 results
in an unstable 011 control sequence.~b! b523.1; stable 011. ~c! b523.23; stable 0011. ~d! b523.4; unstable 0011. ~e! b525.5;
unstable 012. ~f! b525.76; stable 012. ~g! b525.798; stable 0012. ~h! b525.95; unstable 0012.
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conditions areek,1 andek11,1 for the 01k and 001k se-
quences, respectively. Therefore, the boundaries are give
k degree polynomials inb. For example, thek51 control
sequences are stable for 11A11/A<b<11A for A,21
@9#. Figure 2 depicts the stability zones~shaded regions! for
k51 andk52. The boundaries between the stable 01k and
001k sequences are defined by the conditionek50 ~dotted
curves in Fig. 2!. These curves mark the optimal parame
values for a given stability region, because the fixed poin
reached after a single control sequence 01k.

The striking feature of this analysis is that the domain
control is extended by the restriction of Eq.~6! @31#. In fact,
04620
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Fig. 2 shows that for allA,21, stable control sequence
exist for the restricted system. This is in contrast with t
unrestricted system, for which stable control sequences e
only for A.23, as shown by the dashed triangular regi
marking its stability zone@according to Eq.~4!#.

While there are an infinite number of stable zones cor
sponding to an arbitrary numberk of consecutive control
perturbations, the stability zones are bounded by the cu
b5A2222A12A. This boundary is computed by recog
nizing that ask approaches infinity, control is always activ
andXn11.Xn for every iterate. Thus, the algorithm behav
just like the unrestricted control of Eq.~3! with real eigen-
4-3
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KEVIN HALL AND DAVID J. CHRISTINI PHYSICAL REVIEW E 63 046204
values greater than 1 — a condition met only whenb is be-
low the boundary.

2. Restricted control for AÌ1

Typical dynamics of restricted control for positive
sloped unstable directions (A.1) are depicted in Fig. 3
This figure shows four control trials of a linear map, wi
A52.1, for different values ofb; there are three examples o
unstable control and one example wherej* is controlled.

Figure 3~a! shows an unstable 01` sequence forb51.5.
In this case, the perturbations are so small that all state po
lie above the line of identity. The control slows the expone
tial growth ~which would be marked by a rapid exit fromj*
along the solid line!, but fails to force an approach toj* .

If b is decreased tob52.5, then the perturbations ar
large enough so that the first controlledXn is smaller than the
previous Xn21 . jn then falls below the line of identity
thereby generating the 011 control sequence depicted in Fig
3~b!. In this case, the sequence is unstable because a g

FIG. 2. Stability zones of unrestricted@Eq. ~3!# and restricted
@Eq. ~8!# control forA,21. The triangular region enclosed by th
dashed lines in the upper right corner is the stability zone for un
stricted control. For restricted control, thek51 (011 and 0011) and
k52 (012 and 0012) stability zones are the shaded regions enclo
by the solid curves@which arek-degree polynomials inb, deter-
mined via Eq.~9!, as described in the text#. The dotted curves inside
the zones mark the transition from 01k to 001k. The annotated open
circlesa–h correspond to the control parameters for panels~a!–~h!
of Fig. 1. The three vertically spaced solid dots indicate that th
are an infinite number of stability zones for largerk. The infinite
sequence of stability zones is bounded by the curveb5A22
22A12A.
04620
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controlled point is further fromj* than the previous con
trolled point.

For b53.5, control is successful; the state point a
proachesj* in a 011 sequence as shown in Fig. 3~c!. Such
control is successful for a noise-free model system. Ho
ever, for a real-world system, once the state point is su
ciently close toj* , noise will eventually kickjn to the op-
posite side ofj* . Subsequentjn will fall below the line of
identity, causing the control to be deactivated and leading
an exponential departure fromj* .

Whenb is increased further, the first perturbation can
so large that the state point will be kicked to the other side
j* as shown in Fig. 3~d! for b54.5. Again, control is sub-
sequently deactivated and the system diverges from the fi
point.

The boundaries between the different control sequen
are depicted in Fig. 4. The unstable 01` sequence occurs fo
b,A. The unstable 011 sequence is bounded byA,b,1
1A and the converging 011 sequence occurs in the shad
region 11A,b,A2/(A21) @9,34#. Forb.A2/(A21), the
first controlled iterate, and all subsequent iterates, lie be
the line of identity, thereby shutting off the control. Ther
fore, the unstable 010` sequence occurs forb.A2/(A21).

Thus, forA.1, the best that the restricted control alg
rithm can offer is a temporary reversal of divergence fro
the fixed point. However, in Sec. V A we will make a simp
modification to the restricted control algorithm forA.1 that
will keep the system in the vicinity ofj* in the presence of
noise.

IV. EXPERIMENTAL OBSERVATION OF RESTRICTED
CONTROL SEQUENCES

Electrical waves originating in the heart’s upper rig
chamber propagate through cardiac muscle causing it to
tract and thereby pump blood. The upper two chambers
the heart, the atria, act as a priming pump for the lower t
chambers, the ventricles. A specialized electrical conduc
structure called the atrioventricular~AV ! node is solely re-
sponsible for the propagation of the electrical wave from
atria to the ventricles. The relatively slow AV-nodal prop
gation time ensures optimal filling of the ventricles betwe
atrial and ventricular contractions.

As described in Ref.@21#, we studied the dynamic contro
of the AV-nodal conduction time using pulsatile electric
stimulation of the atria inin vitro rabbit heart experiments
Because of the nonlinear excitation properties of AV-no
tissue, the dynamics of AV-nodal conduction can bifurca
from a period-1 regime~where every impulse propagate
through the AV node at the same rate! to a period-2 regime
~where propagation time alternates in a long, short, long,
pattern! during rapid atrial excitation. It has been demo
strated@35,36# that these dynamics can be described by
period-doubling bifurcation of a one-dimensional map of t
form of Eq. ~1!, whereXn is the AV-nodal conduction time
andln is related to the rate of atrial excitation.

The goal in Ref.@21# was to eliminate the alternatin
rhythm by stabilizing the underlying period-1 fixed pointX* .
This was achieved by delivering electrical stimuli to th
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FIG. 3. Return maps~scale-independent!
showing the progression of control sequences
A.1. Sequential state points are numbered,
dotted diagonal line is the identity lineXn11

5Xn , the solid line is the map of the uncon
trolled system with slopeA52.1, the fixed point
j* is denoted by the solid triangle, and the do
dash lines show the system map when perturb
by control interventions.~a! b51.5 results in an
unstable 01` control sequence.~b! b52.5; un-
stable 011 sequence.~c! b53.5; converging 011

sequence.~d! b54.5; unstable 010` sequence.
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FIG. 4. Stability zones of restricted control@Eq. ~8!# for A.1.
The zone of semistability~shaded region, denoted 011) and the
different zones of instability are separated by the curvesb5A, b
511A, andb5A2/(A21). The annotated open circlesa–d cor-
respond to the control parameters for panels~a!–~d! of Fig. 3.
04620
atrial tissue in order to transiently shortenln . Because there
is no practical way to lengthenln , the timing of the electri-
cal stimuli was determined by the restricted controller of E
~5!.

Although thein vitro rabbit cardiac system of Ref.@21#
was not linear, application of the restricted control algorith
resulted in several of the control sequences predicted in
above linear system forA,21. These control sequence
were especially clear at the initiation of control when pert
bations were largest.

For example, Fig. 5~a! shows the variableXn and the
control parameterln during an unstable 011 sequence for a
feedback gaina53.3 ~corresponding to a negativeb be-
cause] f /]l,0 in the cardiac control experiments!. The first
controlled beat is indicated by the arrow and correspond
a negative perturbation ofl0 ~all control perturbations are
negative as imposed by the switching termQn). Because the
system was nonlinear, oscillatory growth ofXn was
quenched and the original large-amplitude alternation ofXn
was reduced in magnitude, but not eliminated.

When a was increased to 5.0@as shown in Fig. 5~b!;
corresponding to a later segment of the same control
that is shown in Fig. 5~a!#, the system shifted to a stable 0011

sequence that eliminated the alternation ofXn . After the
fourth perturbation toln ~beat 303!, the system shifted to a
stable 011 sequence. This shift likely resulted from the clo
proximity of the 011 and 0011 stable zones~Fig. 2!; noise or
drift in the system can cause such transitions.

Figure 5~c! shows a stable 0012 control sequence tha
eliminated the alternation ofXn in a different rabbit heart
usinga52.5. ~Note that thea values from distinct trials are
4-5
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KEVIN HALL AND DAVID J. CHRISTINI PHYSICAL REVIEW E 63 046204
independent.! Similar to the sequence transitions in Fig. 5~b!,
the system switched to its adjacent stable 012 control se-
quence shortly after the control was initiated, and la
switched back to the stable 0012 control sequence.

V. MODIFICATIONS TO THE RESTRICTED
CONTROL ALGORITHM

A. Automatic adaptation of the feedback gain forAËÀ1

Figures 5~a! ~unsuccessful! and 5~b! ~successful! demon-
strate that successful control is dependent on the pro
choice ofa. Such dependence is a critical limitation give
that the information required to determine the correct va
of a (A, j* , and ] f /]Xuj* ) cannot be easily determine
prior to control. Furthermore, the nonstationarities typical
biological systems imply that the appropriate value ofa may
drift over time, thereby increasing the likelihood of contr
failure if a is fixed. To eliminate the limitations of a fixeda
value chosen prior to control, we have developed a new te
nique that adaptively estimatesa @37#. This adaptive ap-
proach is especially appropriate for applications~e.g., cardiac

FIG. 5. Control sequences observed in the rabbit heart exp
ments of Ref.@21#. The first control perturbation in each panel
indicated by an arrow.~a! An unstable 011 sequence fora53.3. ~b!
The same preparation witha55.0. In this case, the control begin
in a stable 0011 sequence and shifts to a stable 011 sequence.~c! A
stable 0012 sequence, shifting to a stable 012 sequence, and return
ing to a stable 0012 sequence in a different preparation witha
52.5.
04620
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arrhythmia control! that cannot afford control failure of the
type shown in the control attempt of Fig. 5~a!.

This new technique exploits the structure of the stabi
zones to automatically adapta such thatj* is stabilized
more robustly. Because multiple perturbations away from
fixed point are not desirable, the optimal stability zone is
k51 zone. Furthermore, because the stablek51 zone has
the largest area, it will be the most robust to noise and dr
ing system parameters. To target this zone,a is adapted
according to

an5H an211da if Qn24•••Qn2150101 or 1010

an212da otherwise,
~10!

whereda is a small increment. When (] f /]l)uj* is negative
~as in the cardiac experiments of Ref.@21#!, a and da are
positive. Otherwise they are negative.

The algorithm of Eq.~10! is motivated by examining the
stability zones in Fig. 2. Fork51, optimal control occurs
when b is at the boundary between stable 011 and stable
0011 ~dotted curve of Fig. 2!. If b is too large, the control
sequence will be 011 ~unstable ifb is so large that it is above
the k51 stability region or stable ifb is within the stability
region but above the optimal control boundary!. In such a
case, the adaptation of Eq.~10! will decreaseb. In contrast,
if b is too small, the control sequence will be 0011 or some
sequence withk.1 ~unstable ifb is so small that it is below
the k51 stability region or stable ifb is within the stability
region but below the optimal control boundary!. In such a
case, the adaptation of Eq.~10! will increaseb. Thus, the
adaptation will adjust the system so that it oscillates betw
the stable 011 and stable 0011 sequences, provided that th
incrementda is small enough so that the step size ofb is
sufficiently less than the height of thek51 stability zone.
Specifically, the conditionudau,uA(] f /]l)uj* u21 ensures
that the step size is less than half the height of the zone

To illustrate the adaptive algorithm, we implemented t
restricted controller of Eq.~5! with the feedback gaina re-
placed byan given by Eq.~10!. a0 was randomly chosen
between25 and210 andda520.1. We applied this con-
troller to the quadratic map,

Xn115lnXn~12Xn!1zn , ~11!

where zn is a normally distributed random variable with
mean of zero and a variance of 0.001. The goal was to
bilize the fixed pointX* 5(l021)/l0 @38#. X* was success-
fully stabilized in the period-2 (l053.30), period-4 (l0
53.52), and chaotic regimes (l053.65) ~not shown due to
space constraints!.

To demonstrate the ability of the adaptive algorithm
track a drifting fixed point, we applied the control algorith
to a quadratic map withl053.0 andln increased by an
increment of 0.001 every iterate (ln115ln10.001). As
seen in Fig. 6, the small increments tol0 introduced a slow
drift in the system dynamics and fixed point. Control w
initiated at iterate 250 while the system was in its period
regime. Control was maintained for 500 iterates. During t

ri-
4-6
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RESTRICTED FEEDBACK CONTROL OF ONE- . . . PHYSICAL REVIEW E 63 046204
period,X* drifted fromX* 50.692 toX* 50.736. Neverthe-
less, the control algorithm had no trouble trackingX* . In
fact, it can be seen that when control was deactivatedn
5750, the system had passed into the chaotic regime
occurrence that did not disrupt control. However, if the fee
back gain was held fixed rather than adapted, then con
could not have been maintained for the entire control per
~not shown!.

B. Control of fixed points for AÌ1

In Sec. III A 2, we demonstrated that the restricted con
algorithm can induce a transient approach towardsj* when
A.1. However, as mentioned, if the system is kicked to
other side ofj* , control is deactivated and the system d
verges fromj* . If the algorithm could detect such an occu
rence and reverse the sign of the perturbations, thenj* could
be approached from the opposite side ofj* @39#. This idea
motivates the following modification of the restricted contr
algorithm:

dln5Q̂n

an

2
~Xn212Xn!, ~12!

where

Q̂n5H 1 if Fn~Xn2Yn!.0

0 otherwise
~13!

and

Fn5H 21 if Q̂n24•••Q̂n2151000

1 otherwise.
~14!

FIG. 6. Adaptive control of a drifting quadratic map@Eq. ~11!#.
The baseline value ofl053.00 was incremented by 0.001 ea
iterate (ln115ln10.001), causing a slow drift in the system. Co
trol was activated from 250<n<750 ~labeled with a ‘‘C’’ !. During
this period,X* drifted fromX* 50.692 toX* 50.736. The adaptive
algorithm tracked the drifting fixed point as the system moved i
the chaotic regime.
04620
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For stable control, a fixed value of the feedback ga
(an5a0) is chosen so that 11A,b,A2/(A21). In order
to adaptively control fixed points withA.1, the controller in
Eq. ~12! can be used with a modified adaptive feedback g
algorithm:

an5H an211da if Q̂n24•••Q̂n2150101 or 1010

an212da otherwise.
~15!

Such a combination is feasible because the control-sequ
boundaries forA.1 dictate that Eq.~15! will direct the sys-
tem towards the converging 0101 . . . sequence~see Fig. 4!.
However, as in the case whenA,21, the increment in the
feedback gain should be chosen such thatan remains in the
stable 011 . . . zone. Choosing udau,u(A21)
3(] f /]l)uj* u21 ensures that the increment is less than h
of the height of the zone.

In order to illustrate the control of an unstable fixed po
with A.1, we applied the modified control algorithm to th
cubic map:

Xn11524~m11!Xn
316~m11!Xn

22~2m13!Xn1ln1zn ,
~16!

whereln is perturbed according to Eq.~12! with l051, m
is the slope of the map at the fixed pointX* 50.5, andzn is
a normally distributed random variable with a mean of ze
and a variance of 0.001.X* was successfully stabilized in
the period-2 (m52.2) and chaotic regimes (m52.7) ~not
shown due to space constraints!.

o

FIG. 7. Adaptive control of a drifting cubic map@Eq. ~16!#. The
baseline value ofm052.0 was incremented by 0.001 each itera
(mn115mn10.001), causing a slow drift in the system. Contr
was activated from 250<n<750 ~labeled with a ‘‘C’’ !. The fixed
point location does not change for the drifting cubic map, but
system drifted into the chaotic regime by the end of the con
period.
4-7
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Results of the adaptive feedback gain algorithm are ill
trated in Fig. 7, which shows control of a drifting cubic ma
with mn115mn10.001 andm052.0. Control was activated
for 250,n,750. The fixed point was controlled succes
fully during this period. The fixed point location does n
change for the drifting cubic map, but the system drifts in
the chaotic regime by the end of the control period.

VI. CONCLUSION

Surprisingly, the typical biological restriction of unidirec
tional control perturbations enhances the controllability
fixed points with A,21 in systems described by one
dimensional maps. Because biological systems typically d
over time, dynamic control algorithms must adapt to syst
nonstationarities. Although the restricted delayed feedb
control technique allows for moderate tracking of the fix
point as long as the system remains within a stability zone
is ill-suited for systems with significant drift. For such sy
tems, automatic adaptation of the feedback gain param
tt

.

s

f,

S

e

tt

s.

R

,

o

J.

04620
-

-

f

ft
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it

ter

ensures that the drifting system is directed to, and rema
within, the largest stability zone. Thus, with the dual bene
of the increased stability of unidirectional restricted cont
and the adaptability of on-the-fly gain estimation, such co
trol techniques could be of significant value to the control
biological systems. Indeed, a recent set of clinical exp
ments@40# have shown that adaptive restricted control of th
type can successfully eliminate the same alternating A
nodal conduction rhythm that was controlled in the rab
experiments of Ref.@21#. Furthermore, we have shown th
simple modifications of the restricted control algorithm c
control fixed points withA.1 — an impossible task for the
unrestricted feedback controller. Thus, this algorithm m
also have applicability in physical systems that allow bi
rectional perturbations.
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